REUE | Original Article

EPITOX Register of Intoxications in Spain. Year 2024

August Supervía¹, Francisca Córdoba², Belén Ruíz Antorán³, Beatriz Martín Pérez⁴, Andrea Martínez Baladrón⁵ Agustín Urdangarín⁶, Ana Ferrer Dufol⁶ y Grupo de Trabajo EPITOX.

INTRODUCTION. The Spanish Foundation of Clinical Toxicology has implemented an online questionnaire, called EPITOX, with the aim of standardizing the collection of characteristics of intoxications treated in emergency departments (EDs) of Spanish hospitals. This study aims to describe the epidemiological characteristics of intoxications registered in EPITOX in 2024.

MATERIAL AND METHODS. The EPITOX questionnaire collects patient identification data, type of intoxication and toxic agent, episode characteristics (intentionality, mode of arrival at the hospital, place of intoxication), clinical data, lab test results, treatment, and the patient's destination upon ED discharge. Data are recorded anonymously by the principal investigator at each participating center.

RESULTS. A total of 5,540 intoxications were registered. The patients' mean age was 38.95 (18.0) years (55.7% men and 65.5% patients of Spanish origin). Most patients (57.1%) arrived by ambulance, 33.7% of intoxications occurred in a public place, and 44.4% at the patient's home. Recreational intoxications accounted for 47.7% of cases, while 28% had suicidal intent. Ethyl alcohol was the most frequently involved toxic agent (46.3%), followed by pharmaceutical drugs (38.3%), illicit drugs of abuse (28.7%), and chemical products (11.6%). A total of 81% of intoxicated patients were discharged directly from the ED, 3.7% were admitted to the intensive care unit, 2.5% to Psychiatry (an additional 7% required transfer to a psychiatric center for evaluation), and 3.2% to a conventional hospitalization unit. Mortality rate was 0.5%.

CONCLUSIONS. The typical profile of an intoxicated patient treated in Spanish EDs is that of young male of Spanish origin. The most prevalent toxic agent is ethanol, followed by pharmaceutical drugs and illicit drugs of abuse. Although most intoxications are mild, up to 6.9% require admission.

Keywords: Intoxication. Epidemiology. Emergency Services.

Registro EPITOX de intoxicaciones en España. Año 2024

INTRODUCCIÓN. La Fundación Española de Toxicología Clínica implantó un cuestionario *online*, denominado EPITOX, con el objetivo de homogeneizar la recogida de las características de las intoxicaciones atendidas en servicios de urgencias (SU) de hospitales españoles. El objetivo de este trabajo es describir las características epidemiológicas de las intoxicaciones registradas en EPITOX en el año 2024.

MATERIAL Y MÉTODOS. El cuestionario EPITOX recoge datos de filiación, tipo de intoxicación y de tóxico, características del episodio (intencionalidad, forma de llegada al hospital, lugar de la intoxicación), datos clínicos, analíticos y de tratamiento, así como el destino al alta de urgencias. Los datos son registrados de forma anonimizada por el investigador de cada centro.

RESULTADOS. Se registraron 5.540 intoxicaciones. La edad media fue de 38,95 (DE 18) años, con un 55,7% de varones y un 65,5% de pacientes de procedencia española. El 57,1% acudió en ambulancia, el 33,7% se produjeron en un lugar público y el 44,4% en el domicilio del paciente. El 47,7% de las intoxicaciones fueron recreativas y un 28% tuvieron intencionalidad suicida. El alcohol etílico fue el tóxico más frecuentemente implicado (46,3%), seguido de los fármacos (38,3%), las drogas de abuso ilegales (28,7%) y los productos químicos (11,6%). El 81% de los pacientes intoxicados pudieron ser dados de alta directamente desde el SU, un 3,7% ingresaron en la unidad de cuidados intensivos, un 2,5% en Psiquiatría (un 7% adicional requirió traslado a un centro con psiquiatra H24 para valoración) y un 3,2% en una unidad de hospitalización convencional. La mortalidad fue del 0,5%.

CONCLUSIONES. El perfil del paciente intoxicado atendido en los SU españoles es del de un varón joven de origen español. El tóxico más prevalente es el etanol, seguido de los fármacos y las drogas de abuso ilegales. La mayoría de las intoxicaciones son leves, pero hasta un 6,9% precisan ingreso.

Palabras clave: Intoxicación. Epidemiología. Servicios de Urgencias.

Author Affiliations: ¹Servicio de Urgencias, Hospital del Mar, Barcelona, Spain. ²Servicio de Urgencias, Hospital Moisés Broggi, Sant Joan Despí, Barcelona, Spain. ³Servicio de Farmacología Clínica, Hospital Puerta del Hierro, Madrid, Spain. ⁴Servicio de Urgencias, Hospital Río Hortega, Valladolid, Spain. ⁵Servicio de Urgencias, Hospital Álvaro Cunqueiro, Vigo, Spain. ⁶Fundación Española de Toxicología Clínica, Spain.

Corresponding Author: August Supervía. Servicio de Urgencias. Hospital del Mar. Pg. Marítim de la Barceloneta, 25-29. 08003 Barcelona, Spain.

E-mail: Asupervia@hmar.cat

Article Information: Received: 14-4-2025. Accepted: 19-5-2025. Online: 13-6-2025.

Editor in Charge: Rafael Castro Delgado.

Introduction

Acute poisoning is defined as exposure to a toxic substance at a given time and for a short period, capable of harming the body through chemical reactions or other molecular-level activity.1 The changing profile of poisoned patients, as well as the diversity of toxic agents, necessitates periodic studies to maintain updated epidemiological data. Therefore, recording the characteristics of poisonings is essential to understand their epidemiology. Ideally, these studies should be multicenter, involving as many hospitals as possible, and should use a shared database to collect all poisonings treated at each site. In Spain, several registries have been developed by individual hospitals or working groups, often using different data collection criteria, which makes comparisons difficult. Among the few standardized multicenter studies are SEMESTOX,2 HISPATOX,3 and Intox-28.4 There are also ongoing registries such as the RE-DUrHE,⁵ focused on poisonings caused by illegal drugs of abuse, and the Spanish Toxicovigilance System (SETV), which records exposures to chemical products used in agriculture, industry, or households.6

Poisonings encompass a wide clinical spectrum determined by the characteristics of the intoxicated patient (age,7-9 sex,¹⁰⁻¹² origin,¹³ presence of comorbidities¹⁴), the type of toxic agents involved (illegal drugs of abuse, pharmaceuticals, chemical products for domestic, agricultural, or industrial use, mushrooms, plants), the intentionality of the poisoning, and the location where it occurred. Therefore, having a single unified registry, in which different centers can report cases using the same methodology, is essential to more accurately determine the characteristics of acute poisonings occurring in Spain. Moreover, with the emergence of new psychoactive substances, medications, and chemical agents, as well as demographic changes in certain geographic areas, the characteristics of poisonings can vary over time. Continuous registries are therefore necessary to detect such changes. 15,16

To optimize the recording of poisonings in Spain, the Spanish Foundation of Clinical Toxicology (FETOC) has implemented an online questionnaire named EPITOX (EPIdemiology of TOXic exposures), designed to standardize the collection of poisoning data. The main objective of this study is to present the results of the cases reported to the registry during 2024, its first year of operation.

Material and methods

FETOC has developed an online registry specifically designed for the collection of poisonings treated in Spanish emergency departments (EDs). This registry integrates data corresponding to chemical product poisonings, which include different types of agents (metals, caustics, detergents, etc.) in solid, liquid, or gaseous form; acute reactions to illegal drug use; and other poisonings caused by agents such as ethyl alcohol, drugs, plants, mushrooms, or venomous animal bites/stings. Accordingly, there are 3 possible access routes to the questionnaire, available through three distinct icons on the FETOC homepage (www.fetoc.es): 1) toxicovigilance: access to the SETV chemical exposure registry —

used only by participants contributing cases involving chemical products; 2) EPITOX: the central icon, used by centers reporting all poisonings attended in their EDs (including those corresponding to SETV and REDUrHE); and 3) REDUrHE: for centers contributing exclusively cases of illegal drug poisonings. At the center is the EPITOX icon, which should be used by those centers that report all intoxication cases treated in their hospital EDs, including those covered by SETV and REDUrHE. Access to the questionnaire is carried out online using access credentials. Each center enters the cases attended in its ED while ensuring data anonymization.

Following implementation, centers affiliated with SETV and those listed in the FETOC database were contacted. A total of 31 hospitals across 9 autonomous communities agreed to participate. Among them, some recorded only chemical toxicovigilance cases, and one recorded both chemical and drug abuse cases. Twelve centers across 6 autonomous communities reported all poisonings treated in their EDs, and these data comprise the present analysis.

At the end of the study year, the recorded cases were exported to an Excel database. Statistical analysis was performed using SPSS v15 for Windows. Results were expressed as numbers (percentages) or means (standard deviations). Student's t-test and chi-square tests (Fisher's or Pearson's correction when appropriate) were used for proportion comparisons. Statistical significance was set at P < .05.

The study was conducted in full compliance with the principles outlined in the Declaration of Helsinki for research involving human subjects. The creation of the EPITOX registry was approved by the Research Ethics Committee of the Department of Health of the Government of Aragón (Ref. 09/2024). The study was exempted from requiring informed consent, as it was an epidemiological investigation using an anonymized database.^{4,6,11}

Results

General data

During 2024, a total of 6,297 poisonings were recorded. Of these, 757 corresponded to centers that recorded only toxicovigilance or illegal drug abuse cases and were therefore excluded. The final analysis included a total of 5,540 cases from 12 centers across 6 autonomous communities (Catalonia, Aragon, Galicia, Navarre, Madrid, and Castile and León). The mean age was 38.95 years (SD, 18); 55.7% were men, and 65.5%, Spanish nationals. Tourists accounted for 2.6% of cases. Monthly distribution was relatively uniform, ranging from 400 cases in July or 402 in December to 518 in August. Ambulance transport occurred in 57.1% of cases. Poisoning took place in a public space in 33.7%, and at home in 44.4%. Nearly half (47.7%) of poisonings were recreational, and 28% were suicidal in intent (Table 1).

In most cases (56.3%), only a single toxic agent was involved. The most frequent toxin was ethyl alcohol (46.3%), followed by pharmaceuticals (38.3%), illegal drugs of abuse (28.7%), and chemical products (11.6%) (Table 2).

	N (%)
Age [mean (SD)]	38.95 (18.0)
Sex	<u> </u>
Male	3,086 (55.7)
Female	2,454 (44.3)
Origin	
Spanish	3,636 (65.5)
Latin America	460 (8.3)
Maghreb	350 (6.3)
European Union	262 (4.7)
Rest of Europe	110 (2)
Sub-Saharan Africa	44 (0.8)
Indian Subcontinent	26 (0.5)
Rest of Asia	25 (0.5)
USA and Canada	23 (0.4)
Australia and New Zealand	1 (0.0)
Unclassified	37 (0.7)
Tourist Tourist	145 (2.6)
Mode of arrival at the ED	
Ambulance	3,166 (57.1)
Own means	1,736 (31.3)
Law enforcement	190 (3.4)
Transfer from another center	88 (1.6)
Fire department	4 (0.1)
Unknown	342 (6.2)
Place of poisoning	
Home	2,457 (44.4)
Street or public place	1,867 (33.7)
Workplace	84 (1.5)
Correctional facility	9 (0.2)
School	4 (0.1)
Unknown	1,018 (18.4)
Type of poisoning	
Recreational	2,644 (47.7)
Suicidal intent	1,549 (28)
Accidental domestic	530 (9.6)
Accidental occupational	77 (1.4)
Other accidental	77 (1.4)
Accidental overdose	54 (1.0)
Assault	9 (0.2)
Foodborne	14 (0.3)
latrogenic	101 (1.8)
Other	172 (3.1)
Unknown	226 (4.1)
History of previous poisonings	2,296 (41.4)
Psychiatric history	2,699 (48.7)

Tables 3 and 4 describe the clinical signs and treatments administered. The most common signs were neurological (55.8%), followed by psychiatric (25%) and digestive (16%). GI decontamination was performed with activated charcoal in 11.6% of cases and gastric lavage in 1.6%. Antidotes were administered in 15.1%, mainly flumazenil (9%).

At ED discharge, 2,600 patients (81%) were discharged directly, 203 (3.7%) were admitted to the intensive care unit (ICU), 140 (2.5%) to psychiatric wards, and 390 (7%) were referred to psychiatric centers for further assessment. Additionally, 177 (3.2%) were admitted to general hospital wards. There were 231 (4.2%) voluntary discharges and 295 (5.3%) absconded cases. Mortality during the poisoning episode was 0.5% (25 patients). The main causes of death were multiple organ failure (6 cases) and cardiovascular complications

Table 2. Type of toxic agents involved	
	N (%)
Type of toxic agent	
Alcohol	2,565 (46.3)
Alcohol only	1,515 (27.3)
Alcohol + drugs of abuse	493 (8.9)
Alcohol + drugs	361 (6.5)
Alcohol + drugs and drugs of abuse	113 (2)
Unknown	83 (1.5)
Drugs	2,123 (38.3)
Benzodiazepines	1,443 (26.0)
Atypical neuroleptics	217 (3.9)
SSRIs antidepressants	210 (3.8)
Paracetamol	160 (2.9)
NSAIDs and ASA	150 (2.7)
Opioids	116 (2.1)
Antiepileptics	115 (2.1)
Gabapentinoids	115 (2.1)
Heterocyclic antidepressants	39 (0.7)
Lithium	22 (0.4)
Metformin	19 (0.3)
Others	327 (5.9)
Drugs of abuse	1,591 (28.7)
Cocaine and derivatives	663 (12.0)
Cannabis and derivatives	615 (11.1)
Amphetamine-type substances	314 (5.7)
GHB/GBL	61(1.1)
Heroin	50 (0.9)
Methadone	41 (0.7)
Ketamine	37 (0.7)
Others	74 (1.3)
Unknown	74 (1.3)
Chemical products	641 (11.6)
Toxic gases	239 (4.3)
Caustics	137 (2.5)
Irritant gases	89 (1.6)
Solvents	40 (0.7)
Detergents	34 (0.6)
Pesticides	20 (0.4)
Others	82 (1.5)
Mushroom poisonings	14 (0.3)
Bites or stings	11 (0.2)
Plant poisonings	4 (0.1)
Number of toxic agents involved (out of 4,744 cases)	4 (0.1)
1	3,120 (56.3)
2	1018 (18.4)
3	
4	409 (7.4)
4 ≥ 5	125 (2.3)
≥ 0	75 (1.3)

SSRIs: selective serotonin reuptake inhibitors; NSAIDs: nonsteroidal antiinflammatory drugs; ASA: acetylsalicylic acid.

(arrhythmia or cardiac arrest, 5 cases). Poisoning was considered the definite cause of death in 10 cases, probable in 5, and contributory in another 5.

Data by Autonomous Community

During 2024, 12 centers from 6 autonomous communities contributed cases to EPITOX. The distribution was uneven: 6 EDs in Catalonia, 2 in Castile and León, and 1 each in Aragon, Galicia, Madrid, and Navarre, limiting interregional comparisons in four of them to data from a single center. Table 5 shows the characteristics of poisonings by region, highlighting their differences.

Table 3. Clinical signs	N. (61)
	N (%)
Digestive symptoms	886 (16.0)
Nausea	345 (6.2)
Vomiting	588 (10.6)
Abdominal pain	172 (3.1)
Diarrhea	45 (0.8)
GI bleeding	5 (0.1)
Caustic injury	14 (0.2)
Neurological symptoms	3,089 (55.8)
Amnesia	87 (1.6)
Headache	211 (3.8)
Confusion	286 (5.2)
Intoxication	802 (14.5)
Drowsiness (GCS = 13–15)	1,212 (21.9)
Tremor	79 (1.4)
Decreased consciousness (GCS < 13)	934 (16.9)
Focal neurological signs	19 (0.3)
Seizures	90 (1.6)
Cardiovascular symptoms	590 (10.6)
Chest pain	105 (2.0)
Tachycardia (HR > 90 bpm)	1918 (41.8)*
Palpitations	340 (6.1)
Syncope	70 (0.1)
Acute pulmonary edema	1(0.0)
Cardiac arrest	9 (0.2)
Respiratory symptoms	291 (5.3)
Dyspnea	164 (3.0)
Cough	67 (1.2)
Bronchospasm	39 (0.7)
Bronchoaspiration	37 (0.7)
Cutaneous signs	136 (2.5)
Ocular signs	139 (2.5)
Psychiatric symptoms	1,390 (25.1)
Agitation	739 (13.3)
Hallucinations	80 (1.4)
Anxiety	415 (7.5)
Aggressiveness	643 (11.6)
Behavioral disorder	106 (1.9)
Psychosis	97 (1.7)
Depression	205 (3.7)

*Calculated based on 4,584 cases with recorded HR. GCS: Glasgow Coma Score; HR: heart rate; GI: gastrointestinal.

The mean age of poisoned patients was higher in Galicia and Navarre (44 years) compared to under 40 years in other regions.

Regarding sex distribution, men predominated in all regions except Galicia and Madrid, where women were slightly more frequent, though proportions were close to 50%. Most patients were Spanish nationals, though in Catalonia this group represented only 57.4%, the only region with a significant number of tourists (6.2%) (P < .001 in all comparisons).

Other notable differences included the intentionality of poisoning, with 45.4% suicidal cases in Madrid (P < .001). The location of poisoning varied between home and public spaces, and ethyl alcohol was the most common toxin except in Aragon (predominantly illegal drugs) and Madrid (higher percentage of pharmaceutical poisonings) (P < .001). Regarding disposition, most patients were discharged from the ED, exceeding 80% in Aragon, Castile and León, and Galicia (P < .001). Voluntary discharges ranged from 3.2% in

Table 4. Treatments administered	
	N (%)
Nonspecific treatment	3,174 (57.3)
Mechanical restraint	335 (6.0)
Pharmacological sedation	463 (8.4)
Skin decontamination	13 (0.2)
Ocular decontamination	93 (1.7)
GI decontamination	
Activated charcoal	645 (11.6)
Gastric lavage	87 (1.6)
Intestinal lavage	9 (0.2)
Antidote	839 (15.1)
Naloxone	177 (3.2)
Flumazenil	498 (9.0)
N-acetylcysteine	76 (1.4)
Oxygen therapy	192 (3.5)
Hyperbaric oxygen therapy	78 (1.4)
Vitamin K	9 (0.2)
Hydroxocobalamin	6 (0.1)
Hypertonic glucose	10 (0.2)
Others	16 (0.3)
Extrarenal purification	
Hemodiafiltration	11 (0.2)
Hemodialysis	8 (0.1)
Hemofiltration	2 (0.0)
Renal purification	
Forced alkaline diuresis	17 (0.3)
Forced neutral diuresis	31 (0.6)
OTI with MV and CPR	24 (0.4)

OTI: orotracheal intubation; MV: mechanical ventilation; CPR: cardiopulmonary resuscitation; GI: qastrointestinal.

Madrid to 6.3% in Castile and León (P = .03), while Catalonia (9.3%) and Galicia (6.7%) had the highest absconding rates (P < .001).

Finally, the mortality rate remained low—although slightly higher than in previous series^{2,3} with maximum rates of 0.6%, except in Navarre, where a single death was recorded (P < .001).

Distribution by sex

Of the 5,540 recorded cases, a total of 3,086 (55.7%) were men and 2,454 (44.3%) were women, with a mean age of 39.1 and 38.7 years, respectively. In both groups, patients of Spanish origin predominated, although among men the percentage was lower (63.5% vs 67.8%, P < .001). Sex-based distribution showed differences in many of the parameters analyzed (Table 6). Women had fewer previous poisonings than men, but more psychiatric history (38.7% and 56.8% vs 43.6% and 42.3%; P < .001 in both comparisons) and had a higher rate of poisonings with suicidal intent (41.9% vs 16.9%; P < .001), whereas recreational poisonings predominated in men (61.3% vs 30.6%; P < .001). Differences were also found in the place of poisoning, with a public place being most frequent in men (44.9%), while women were more often poisoned at home (58.8%).

With respect to the type of toxic agent, alcohol and illegal drugs of abuse predominated among men (54.1% and 36.2%), while drug use predominated among women (51.3%). Poisonings by chemical products represented a smaller percentage overall but were more frequent in wo-

Table 5	Comparison	across autonomous	communities
Table 5.	Comparison	across autonomous	communities

	Autonomous Community						
	Aragon N = 1,062 n (%)	Castile and León N = 788 n (%)	Catalonia N = 2,185 n (%)	Galicia N = 697 n (%)	Madrid N = 691 n (%)	Navarre N = 117 n (%)	P value
Age [mean (SD)]	35.9 (17.6)	39.8 (18.2)	37.8 (17.8)	44.3 (16.7)	39.8 (18.5)	44.4 (20.1)	< .001
Male sex	573 (54)	485 (61.5)	1,285 (58.8)	343 (49.2)	332 (48)	68 (58.1)	< .001
Spanish origin	414 (76.5)1	686 (87)	1,255 (57.4)	617 (88.5)	560 (81)	94 (80.3)	.000
Tourist	0	8 (1)	135 (6.2)	0	2 (0.3)	0	< .001
Previous intoxications	348 (32.8)	326 (41.4)	893 (40.9)	325 (46.6)	360 (52.1)	44 (37.6)	< .001
Psychiatric history	559 (52.6)	347 (44)	947 (43.3)	362 (51.9)	438 (63.4)	46 (39.3)	< .001
HIV infection	3 (0.3)	8 (1)	76 (3.5)	34 (4.9)	6 (0.9)	0	.000
Mode of arrival			. (,			-	< .001
Ambulance	450 (42.4)	450 (57.1)	1,634 (74.8)	277 (39.7)	296 (42.8)	59 (50.4)	
Own means	365 (34.4)	255 (32.4)	431 (19.7)	325 (46.6)	303 (43.8)	57 (48.7)	
Other/unknown	247 (23.2)	83 (10.5)	120 (5.5)	95 (13.6)	92 (13.1)	1 (0.1)	
Place of intoxication	217 (20.2)	00 (10.0)	120 (0.0)	70 (10.0)	72 (10.1)	1 (0.1)	< .001
Home	573 (54)	319 (40.5)	914 (41.8)	192 (27.5)	385 (55.7)	74 (63.2)	
Public place	252 (23.7)	304 (38.6)	1031 (47.2)	58 (8.3)	190 (27.5)	32 (27.3)	
Other	13 (1.2)	19 (2.4)	32 (1.5)	20 (2.9)	7 (1.0)	6 (5.1)	
Unknown	224 (21.1)	146 (18.5)	208 (9.5)	427(61.3)	109 (15.8)	5 (4.3)	
Type of intoxication	227 (21.1)	140 (10.5)	200 (7.5)	427 (01.3)	107 (13.0)	3 (4.5)	< .001
Recreational	512 (48.2)	421 (53.4)	1,148 (52.5)	301 (43.2)	213 (30.8)	49 (41.9)	₹.001
Suicidal	349 (32.9)	163 (20.7)	530 (24.3)	167 (24.0)	314 (45.4)	26 (22.2)	
Accidental	100 (9.4)	108 (13.7)	267 (12.1)	169 (24.2)	62 (9.0)	32 (27.3)	
latrogenic	26 (2.4)	12 (1.5)	38 (1.7)	1 (0.1)	21 (3.0)	3 (2.6)	
Other/unknown	75 (7.1)	84 (10.6)	202 (9.2)	59 (8.5)	81 (11.7)	7 (6.0)	
Type of toxic agent	73 (7.1)	04 (10.0)	202 (7.2)	37 (0.3)	01 (11.7)	7 (0.0)	< .001
Alcohol	444 (41.8)	456 (57.9)	1,033 (47.3)	291 (41.8)	291 (42.1)	50 (42.7)	< .001
Drugs	421 (39.6)	293 (37.2)	793 (36.3)	216 (31.0)	361 (52.2)	39 (33.3)	
Drugs of abuse	468 (44.1)	188 (23.9)	569 (26.0)	163 (23.4)	182 (26.3)	21 (17.9)	
Chemical products	77 (7.3)	85 (10.8)	230 (10.5)	181 (26)	45 (6.5)	23 (19.7)	
Other	4 (0.4)	1 (0.1)	11 (0.5)	2 (0.3)	1 (0.1)	0	
Clinical signs	4 (0.4)	1 (0.1)	11 (0.5)	2 (0.3)	1 (0.1)	0	< .001
Digestive	191 (18)	144 (18.3)	347 (15.9)	83 (11.9)	100 (14.5)	21 (17.9)	< .001
Neurological	565 (53.2)	432 (54.8)	1,367 (62.6)	320 (45.9)	329 (47.6)	76 (65)	
- v	300 (28.2)	48 (6.1)	161 (7.4)	33 (4.7)	38 (5.5)	10 (8.5)	
Cardiovascular	63 (5.9)		109 (5.0)	33 (4.7)			
Respiratory		42 (5.3)			22 (3.2)	16 (13.7)	
Cutaneous Ocular	2 (0.2)	58 (7.4)	55 (2.5)	3 (0.4)	14 (2.0)	4 (3.4)	
	2 (0.2)	31 (3.9)	19 (0.9)	62 (8.9)	17 (2.5)	8 (6.8)	
Psychiatric	254 (23.9)	239 (30.3)	497 (22.7)	153 (22.0)	226 (32.7)	21 (17.9)	. 001
Disposition	057 (00.0)	(01/0/4)	1/05/74/1	592 (84.9)	F07 /77 7\	00 (7/ 1)	< .001
Discharged home	956 (90.0)	681 (86.4)	1625 (74.4)		537 (77.7)	89 (76.1)	
ICU admission	46 (4.3)	24 (3.0)	79 (3.6)	17 (2.4)	35 (5.1)	2 (1.7)	
HU admission	33 (3.1)	30 (3.8)	49 (2.2)	15 (2.2)	41 (5.9)	9 (7.7)	
Psychiatric unit admission	12 (8.6)	30 (3.8)	10 (0.5)	40 (5.7)	45 (6.5)	3 (2.6)	
Transfer for psychiatric evaluation	8 (0.8)	2 (0.3)	351 (16.1)	2 (0.3)	21 (3.0)	6 (5.1)	
Other destinations	6 (0.6)	21 (2.7)	71 (3.2)	31 (4.4)	12 (1.7)	8 (6.8)	000
Voluntary discharge	42 (4.0)	50 (6.3)	82 (3.8)	31 (4.4)	22 (3.2)	4 (3.4)	.030
Escape	8 (0.8)	23 (2.9)	203 (9.3)	47 (6.7)	13 (1.9)	1 (0.9)	< .001
Death during the episode	3 (0.3)	3 (0.4)	12 (0.2)	0	4 (0.6)	3 (2.6)	< .001

Percentage calculated on 541 cases where the origin of the intoxicated patient was recorded. ICU: intensive care unit; HU: hospitalization unit.

men (13.8% vs 9.8%; P < .001). Finally, a higher proportion of men (82.5%) could be discharged directly from the ED, whereas women more frequently required psychiatric admission or psychiatric evaluation. Mortality was higher among men (0.6% vs 0.3%; P = .028).

Discussion

This work presents the results from the first year of implementation of the EPITOX registry. The poisoned patient

attended in Spanish EDs is most commonly a middle-aged man. The most frequently involved toxic agent is ethyl alcohol, followed by drugs and illegal drugs of abuse, followed by drugs, confirming the results of a former multicenter study,⁴ in contrast to single-center studies whose results vary according to the area where they are conducted^{10,17} as demonstrated in a recent study covering three areas of the Region of Murcia.¹⁸ This percentage of pharmacological poisonings may explain why most recorded poisonings occurred at the patient's home, rather than in a public place, where

	Se	Sex			
	Male N = 3.086 n (%)	Female N = 2.454 n (%)	P value		
Age [mean (SD)]	39.1 (17.2)	38.7 (18.9)	.367		
Spanish origin	1,962 (63.5)	1,664 (67.8)	< .001		
Tourist	77 (2.5)	68 (2.8)	.004		
Previous intoxications	1,346 (43.6)	950 (38.7)	< .001		
Psychiatric history	1,304 (42.3)	1,395 (56.8)	< .001		
HIV infection	98 (3.2)	29 (1.2)	< .001		
Mode of arrival		, ,	< .001		
Ambulance	1,858 (60.2)	1,308 (53.3)			
Own means	861 (27.9)	875 (35.7)			
Other/unknown	360 (11.7)	271 (11.0)			
Place of intoxication			< .001		
Home	1,014 (32.9)	1,443 (58.8)			
Public place	1,387 (44.9)	577 (23.5)			
Other/unknown	685 (22.2)	434 (17.7)			
Type of intoxication			< .001		
Recreational	1,893 (61.3)	751 (30.6)			
Suicidal	522 (16.9)	1,027 (41.9)			
Accidental	348 (11.3)	390 (15.9)			
latrogenic	41 (1.3)	60 (2.4)			
Other/unknown	282 (9.1)	226 (9.2)			
Type of toxic agent					
Alcohol	1,669 (54.1)	896 (36.5)	< .001		
Medications	865 (28.0)	1,258 (51.3)	< .001		
Drugs of abuse	1,116 (36.2)	475 (19.4)	< .001		
Chemical products	302 (9.8)	339 (13.8)	< .001		
Others	16 (0.5)	13 (0.5)	.393		
Clinical signs			< .001		
Digestive	450 (14.6)	436 (17.8)			
Neurological	1,766 (57.2)	1,323 (53.9)			
Cardiovascular	355 (11.5)	235 (9.6)			
Respiratory	155 (5.0)	136 (5.5)			
Cutaneous	98 (3.2)	38 (1.5)			
Ocular	70 (2.3)	69 (2.8)			
Psychiatric	842 (27.3)	548 (22.3)			
Disposition			< .001		
Discharged home	2,547 (82.5)	1,933 (78.8)			
ICU admission	136 (4.4)	67 (2.7)			
HU admission	97 (3.1)	80 (3.3)			
Psychiatric unit admission	68 (2.2)	72 (2.9)			
Transfer for psychiatric evaluation	149 (4.8)	241 (9.8)			
Other destinations	88 (2.9)	61 (2.5)			
Voluntary discharge	138 (4.5)	93 (3.8)	.207		
Escape	210 (6.8)	85 (3.5)	< .001		
Death during the episode	17 (0.6)	8 (0.3)	.028		

many recreational poisonings take place.¹⁰ The high rate of poisonings with suicidal intent is also notable and alarming, and has been the subject of various reports, especially after the SARS-CoV-2 pandemic.^{19,21}

Regarding treatment received by poisoned patients, the high rate of use of an antidote such as flumazenil stands out, a finding also described in a recent publication by the REDUrHE group.²² Although the correct indication for flumazenil use was not assessed here, the usefulness of unified registries such as EPITOX should be emphasized for detecting aspects of daily clinical practice that might be amenable to improvement. Thus, the aim of epidemiological stu-

dies is not only to describe the characteristics of a given process, but also to prompt investigation of striking findings and, ultimately, to improve the quality of care provided to patients.

Mortality associated with the poisoning episode is low, and there is a high rate of association with the poisoning episode *per se*—figures similar to those of the EXITOX study²³—so no changes are observed in mortality data related to toxic agents compared with those of the previous decade, at least in the hospital setting.

Although differences were detected across autonomous communities, these should be interpreted with caution due to the number of participating EDs in each region. In fact, only 2 autonomous communities contributed cases from more than one ED. Even so, some relevant differences can be noted, such as the higher rate of poisonings with suicidal intent in Aragon and Madrid, a finding that should be confirmed in coming years as more centers join the registry. Also notable is the higher percentage of non-Spanish patients and tourists in Catalonia. This may be due to migratory flows typical of large cities and to Barcelona's status as a city with strong tourist appeal.⁵ In this regard, the low percentage of non-Spanish patients in the Community of Madrid is striking, but this may be due to the fact that only 1 center from this community participated. As for disposition, there was a higher rate of admissions to psychiatric services in Aragon and Madrid, which is consistent with the higher rate of poisonings with suicidal intent recorded in these communities, and a higher percentage of absconding in Catalonia, which could be influenced by the higher percentage of poisonings among tourists—generally a young population with poisonings of recreational cause.

Sex-based distribution revealed numerous differences between men and women. Among women there is higher suicidal intent, more frequent poisonings at home, and greater use of drugs, whereas men are more often poisoned in public places, for recreational purposes, and tend to consume alcohol and illegal drugs of abuse. These data are consistent with previous locally conducted studies¹⁰ and may indicate that the profile of poisoned patients by sex is similar across Spain. The higher rate of chemical product poisonings in women is noteworthy, which may be influenced by the fact that women continue, in greater proportion, to be responsible for household tasks, and therefore more frequently have access to household products—mainly cleaning agents.

This study has several limitations. First, not all autonomous communities are represented, and in 4 of them, cases come from a single ED, so the distribution of cases is not homogeneous, with a greater concentration in certain communities. In addition, it is possible that some participant centers could not include all cases attended in their EDs, which may be a consequence of the pressure on EDs, with a lack of time and resources necessary to carry out registries of this kind—registries that are undoubtedly necessary to understand the reality of care in our country. Another limitation is that this work only describes the characteristics of the reported cases, without performing an analysis of the quality

of care provided or follow-up of patients once discharged from the ED. These limitations may introduce bias, whether in temporal distribution by months, in the ate of poisoning types, or in inter-community differences. Nevertheless, we believe that the number of cases captured by the registry is sufficiently high to validate the results obtained.

In conclusion, implementing a single registry such as EPITOX is essential to compare the characteristics of poisonings across different autonomous communities and hospital centers. Annual analysis of this registry will make it possible to identify changes over time in the profile of poisonings attended in Spanish EDs.

ARTICLE INFORMATION

Conflict of Interest Disclosures: None reported.

Funding: The EPITOX registry is funded by the Spanish Foundation of Clinical Toxicology (FETOC). The authors declare that no funding was received in relation to the present article.

Ethical Responsibilities: All authors confirm that patient confidentiality and rights were respected, that publication agreement was obtained, and that data rights were transferred to the Revista Española de Urgencias y Emergencias.

Data availability statement: Data are available upon request from the corresponding author.

Authors' contributions (CRedIT): AS: Registry development, data entry in the registry, data analysis, and drafting of the article. FC: Registry development, data entry in the registry, data analysis, and drafting of the article. BRA: Data entry in the registry, article review. BMP: Data entry in the registry, article review. AMB: Article review. AU: Registry development and database creation. AFD: Registry development, data entry in the registry, and article review. EPITOX Working Group: Data entry in the registry.

Use of generative artificial intelligence tools: The authors declare that no AI tools were used in the preparation of this article.

Article not commissioned by the Editorial Committee and externally peer reviewed.

Note of the editors: This is a BOWMAN-generated English translation of the officially indexed Spanish-language article, which should be cited as Rev Esp Urg Emerg. 2025;4:210-217. In this translated version, the editors have supervised the process; however, it cannot be ruled out that some errors resulting from the artificial intelligence translation process may have gone unnoticed.

ADDENDUM

Members of the EPITOX Working Group (Epidemiology of Poisonings): Hospital del Mar, Barcelona: August Supervía, Pablo Navarro, Alma Palomino, Mònica Alemany, Aina Llabrés, Mar Domingo, Sandra Ortigosa, Amaia Bilbao. Hospital Moisés Broggi y Hospital General de Hospitalet: Francisca Córdoba, Neus Rodríguez Farré, Margarita Sotomayor Dávila, María del Carmen Lomas Fernández. Hospital Clínico Universitario de Zaragoza: Francisco Ruíz Ruíz, Ana Serrano Ferrer. Hospital Joan XXIII, Tarragona: Marta Serrano Giménez, Irina Hernández Medina, Albert Moreno Destruels. Hospital Álvaro Cunqueiro de Vigo: Félix García Alonso, Maite Maza Vera y Andrea Martínez Baladrón. Hospital Puerta de Hierro, Majadahonda: Belén Ruíz- Antoran, Antonio F Caballero-Bermejo, Alvaro Pineda Torcuato, Clara García Justicia, Gerard Ronda Roca, Sabina Aranda, Jose Porcel, José Ángel Oya Martínez. Hospital Josep Trueta, Girona: Maria Àngels Gispert Ametller, Laia Ferrer Caballé, Cristina Ramió Lluch, Maria Eulàlia Guerrero González, Raquel Aguilar Salmerón, Montserrat Gispert-Saüch Puigdevall, María Codinach Martín. Hospital Santa Caterina, Girona: Juliana González Londoño, Raquel Feria Gil. Hospital Universitario Río Hortega, Valladolid: Beatriz Martín Pérez, Hilda Fernández Ovalle, Raquel Hernando Fernández, María Jesús Giraldo Pérez, Nuria López Herrero, Rubén Pérez García, Ana Ramos Rodríguez, Raguel Talegón Martín. Hospital Clínico de Salamanca: Ángel Bajo Bajo, Vega Riesco. Hospital García Oncoyen, Estella: Fermina Beramendi Garciandía. Hospital Clínic de Barcelona: Emilio Salgado, Miguel Galicia, Carolina Sánchez. Hospital Sant Joan de Déu, Barcelona: Lidia Martínez Sánchez. Hospital La Paz, Madrid: Mikel Urroz Elizalde. Complejo Hospitalario de Navarra: Carmen Merino Rubio, Eugenia Garcia Mouriz, Fermina Beramendi Garciandía, Maider Igartua Astibia. Valle Molina Samper. Hospital Parc Taulí, Sabadell: Lidia García Gibert. Hospital Son Espases, Palma de Mallorca: Jordi Puiguriguer Ferrando. Hospital Universitario de Burgos: Francisco Javier Callado, Lorena Pérez González. Fundación Española de Toxicología Clínica: Ana Ferrer Dufol, Santiago Nogué Xarau, Guillermo Burillo-Putze.

REFERENCES

- Hu HY, Chou HL, Lu WH, Huang HH, Yang ChCh, Yen DHT, et al. Features and prognostic factors for elderly with acute poisoning in the Emergency Department. JCMA. 2010;73:78-87.
- Burillo-Putze G, Munné P, Dueñas A, Pinillos MA, Naveiro JM, Cobo J, et al. National Multicentric study of acute intoxication in emergency departments of Spain. Eur J Emerg Med. 2003;10:101-4.
- 3. Burillo G, Munne P, Dueñas A, Trujillo MM, Jiménez A, Adrián MJ, et al. Intoxicaciones agudas: perfil epidemiológico y clínico y análisis de las técnicas de descontaminación digestiva utilizadas en los servicios de urgencias españoles en el año 2006 Estudio Hispatox –. Emergencias. 2008;20:16-26.
- 4. Supervía A, Salgado E, Córdoba F, García Gibert L, Martínez Sánchez L, Moreno A, et al. Características de las intoxicaciones agudas atendidas en Cataluña. Diferencias según grupos de edad. Estudio Intox-28. Emergencias. 2021;33:115-20.
- 5. Ibrachim-Achi D, Miró Ò, Galicia M, Supervía A, Puiguriguer Ferrando J, Ortega Pérez, et al. Red de Estudio de Drogas en Urgencias Hospitalarias en España (Registro REDUrHE): análisis general y comparación según asistencia en día laborable o festivo. Emergencias. 2021;33:335-44.
- 6. González-Díaz A, Ferrer-Dufol A, Nogué Xarau S, Puiguriguer Ferrando J, Dueñas Laita A, Rodríguez Álvarez C, et al. Intoxicaciones agudas por productos químicos: Análisis de los primeros 15 años del Sistema Español de Toxicovigilancia. Rev Esp Salud Publica. 2020;94:e1-9.
- Šupervía A, Pállàs O, Clemente C, Aranda MD, Pi-Figueras M, Cirera I. Características diferenciales de las intoxicaciones en los pacientes ancianos atendidos en un servicio de urgencias. Emergencias. 2017;29:335-8.
- 8. Santiago P, Bilbao N, Martínez-Indart L, Mintei S, Azkunaga B. Epidemiology of acute pediatric poisonings in Spain. A prospective multicenter study from the Spanish Society of

- Pediatric Emergency Medicine. Eur J Emerg Med. 2020;27:284-9.
- 9. Burillo-Purze G, Ibrachim-Achi D, Martínez Sánchez L, Galicia M, Supervía A, Puiguriguer Ferrando J, et al. Características diferenciales en las manifestaciones clínicas y la gravedad de las intoxicaciones por drogas de abuso en adolescentes atendidos en servicios de urgencias en comparación con adultos jóvenes. Emergencias. 2022;34:352-60.
- Clemente C, Aguirre A, Echarte JL, Puente I, Iglesias ML, Supervía A. Diferencias entre hombres y mujeres en las características de las intoxicaciones. Emergencias. 2010;22:435-40.
- 11. Galicia M, Ibrachim-Achi D, Miró Ò, Supervía A, Puiguriguer J, Leciñena MÁ, et al. Características de las intoxicaciones por drogas de abuso atendidas en once servicios de urgencias españoles: Análisis diferenciado por sexo. Adicciones. 2023;35:315-24.
- 12. Llorens P, Lirón-García Á, Santos-Redondo M, Marín-Aparicio J, Espinosa B, Martrínez E, et al. Grado de cumplimiento de los indicadores de calidad según el sexo del paciente en las intoxicaciones agudas en urgencias. Emergencias. 2024;36:97-103.
- Člemente C, Echarte JL, Aguirre A, Puente I, Iglesias ML, Supervía A. Diferencias en las intoxicaciones de los españoles y los extranjeros atendidas en urgencias. Emergencias. 2011;23:271-5.
- 14. Losada A, Supervía A, Vallecillo G, Petrus C, Aranda A, Chen J, et al. Intoxicaciones por drogas de abuso: características diferenciales en población VIH. Emergencias. 2023;35:103-8.
- Supervía A, Clemente C, Aguirre A, Iglesias ML, Puente I, Cirera I, et al. Cambios en las intoxicaciones entre dos periodos de tiempo en un Servicio de Urgencias. Rev Toxicol. 2014;31:63-7.
- 16. Puiguriguer J, Yates C, Gervilla E, Ortega J, García Belenguer E, Jiménez López R. Evolución temporal de las intoxicaciones medicamentosas. Emergencias. 2019;31:107-10.
- 17. Couce-Sánchez, MJ, Villea-García del Real H, Bermejo-Barrera AM. Epidemiología de las intoxicaciones agudas en el Servicio de Urgencias del Hospital Clínico Universitario de Santiago de Compostela. Rev Toxicol. 2023;40:28-34.
- 18. Baeza M, Muñoz-Ortega A, Vela N. Prevalence of acute poisoning treated in 3 hospitals in Southeast Spain. Rev Clin Esp. 2020;220:236-43.
- 19. Caballero-Bermejo F, Ortega-Pérez J, Frontera-Juan G, Homar-Amengual C, Barceló-Martín B, Puiguriguer-Ferrando J. Intoxicaciones agudas atendidas en un servicio de urgencias. De la prepandemia a la nueva normalidad. Rev Clin Esp. 2022;222:406-11.
- Marín-Casino M, Clemente C, Supervía A. Cambios en las intoxicaciones durante el periodo de alarma decretado por la pandemia de la COVID-19. Med Clin (Barc). 2024;162:354-5.
- Benito-Lozano M, Travería-Becker L, Herranz-Duarte I, Criado Gutiérrez I, López Hernández MA. Tentativas suicidas graves asociadas a confinamiento por COVID-19. Rev Esp Urg Emerg. 2022;1:53-4.

- 22. Rodríguez-Ocejo MC, Rodríguez-Gamella B, Galicia Paredes M, Pagán F, Supervía Caparrós A, Ibrahim-Achi D, et al. en representación de la Red de estudio de drogas en Urgencias
- Hospitalarias en España (REDUrHE). Análisis del uso de antídotos en intoxicaciones por drogas de abuso en servicios de urgencias españoles. Emergencias. 2025;37:87-94.
- 23. Puiguriguer J, Nogué S, Echarte JL, Ferrer A, Dueñas A, García L, et al. Mortalidad hospitalaria por intoxicación en España (EXITOX 2012). Emergencias. 2013;25:467-71.